

Date Planned : / /	Daily Tutorial Sheet-3	Expected Duration : 90 Min	
Actual Date of Attempt : / /	JEE Advanced Archive	Exact Duration :	

31. Name the structure of silicates in which three oxygen atoms of $[SiO_4]^{4-}$ are shared is : (2005)

(A) pyrosilicate

(B) sheet silicate

(C) linear chain silicate

(D) three-dimensional silicate

32. Starting from $SiCl_4$, prepare the following in steps not exceeding the number given in parenthesis (give reactions only) (2005)

(i) Silicon

(1 step)

(ii) Linear silicon containing methyl group only

(2 steps)

(iii) Na_2SiO_3

(3 steps)

33. Match the following:

(2006)

Column-I		Column-II	
(A)	$Bi^{3+} \longrightarrow (BiO)^{+}$	(p)	Heat
(B)	$[AlO_2]^- \longrightarrow Al(OH)_3$	(p)	Hydrolysis
(C)	$SiO_4^{4-} \longrightarrow Si_2O_7^{6-}$	(r)	Acidification
(D)	$(B_4O_7^{2-}) \longrightarrow [B(OH)_3]$	(s)	Dilution by water

34. $B(OH)_3 + NaOH \rightleftharpoons NaBO_2 + Na[B(OH)_4] + H_2O$

How can this reaction is made to proceed in forward direction?

(2006)

(A) Addition of cis 1, 2-diol

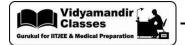
(B) Addition of borax

(C) Addition of trans 1, 2-diol

(D) Addition of Na₂HPO₄

35. Statement-I: Boron always forms covalent bond.

(2007)


Statement-II: The small size of B^{3+} favours formation of covalent bond.

- (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I
- **(B)** Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True
- **36. Statement-I:** In water, orthoboric acid behaves as a weak monobasic acid.

(2007)

Statement-II: In water, orthoboric acid acts as a proton donor.

- (A) Statement-I is True, Statement-II is True and Statement-II is a correct explanation for Statement-I
- (B) Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for Statement-I
- (C) Statement-I is True, Statement-II is False
- (D) Statement-I is False, Statement-II is True

37 .	H_3BO_3	is:			(2007)			
	(A)	monobasic and weak Lewis acid	(B)	monobasic and weak Bronsted a	cid			
	(C)	monobasic and strong Lewis acid	(D)	tribasic and weak Bronsted acid				
38.	Staten	ent-I : Pb ⁴⁺ compound are stronger o	xidizing	agent than Sn^{2+} compounds.	(2008)			
	Statement-II: The higher oxidation states for the group 14 elements are more stable for the heavier							
	members of the group due to 'inert pair effect".							
	(A)	Statement-I is True, Statement-II is	True	and Statement-II is a correct	explanation for			
		Statement-I						
	(B)	Statement-I is True, Statement-II is True and Statement-II is NOT a correct explanation for						
	(C)	Statement-I is True Statement-II is False						
	(D)	Statement-I is True, Statement-II is False Statement-I is False, Statement-II is True						
*39.		reaction, $2X + B_2H_6 \longrightarrow [BH_2(X)_2]^+[BH_2(X)_2]^+$		e amine(a) V is /are :	(2009)			
33.								
	(A)	NH ₃ (B) CH ₃ NH ₂	(C)	$(CH_3)_2NH$ (D) $(CH_3)_3N$				
40.	The val	ue of n in the molecular formula $\operatorname{Be_nAl_2}$	Si_6O_{18}	is:	(2010)			
*41.	With re	th respect to graphite and diamond, which of the statement (s) given below is/are correct. (2012)						
	(A)	Graphite is harder than diamond						
	(B)	Graphite has higher electrical conductivity than diamond						
	(C)	Graphite has higher thermal conductivity than diamond						
	(D)	Graphite has higher C-C bond order than diamond						
*42.	The co	The correct statement(s) for orthoboric acid is/are: (2014)						
	(A)	It behaves as a weak acid in water due to self ionization						
	(B)	Acidity of its aqueous solution increases upon addition of ethylene glycol						
	(C)	It has a three-dimensional structure due to hydrogen bonding						
	(D)	It is a weak electrolyte in water						
43.	Three moles of $\mathrm{B_2H_6}$ are completely reacted with methanol. The number of moles of boron containing							
	produc	ts formed is			(2015)			
44	Under	hydrolytic conditions, the compounds	used f	or preparation of linear polymer	and for chain			
	termina	ation, respectively, are :			(2015)			
	(A)	$\mathrm{CH_{3}SiCl_{3}}$ and $\mathrm{Si}(\mathrm{CH_{3}})_{4}$	(B)	$(CH_3)_2SiCl_2$ and $(CH_3)_3SiCl$				
	(C)	(CH ₃) ₂ SiCl ₂ and CH ₃ SiCl ₃	(D)	SiCl ₄ and (CH ₃) ₃ SiCl				
45 .	The increasing order of atomic radii of the following Group 13 elements is : (2016)							
-0.	(A)	Al < Ga < In < Tl	(B)	Ga < Al < In < Tl	(2 2)			
	(C)	Al < In < Ga < Tl	(D)	Al < Ga < Tl < In				
46 .	The cry	stalline form of borax has :			(2016)			
	(A)	tetranuclear $[B_4O_5(OH_4)]^{2-}$ unit	(B)	all boron atoms in the same plan	•			
	(C)	equal number of sp^2 and sp^3 hybridize		•				
	(D)							

47. Among the following, the correct statement(s) is/(are):

()

(2017)

- (A) $Al(CH_3)_3$ has the three centre two-electron bonds in its dimeric structure
- (\mathbf{B}) BH $_3$ has the three-centre two-electron bonds in its dimeric structure
- (C) $AlCl_3$ has the three-centre two-electron bonds in its dimeric structure
- (D) The Lewis acidity of BCl₃ is greater than that of AlCl₃
- **48.** A tin chloride Q undergoes the following reactions (not balanced)

$$Q + Cl^{-} \longrightarrow X$$

$$Q + Me_3N \longrightarrow Y$$

$$Q + CuCl_2 \longrightarrow Z + CuCl$$

X is a monoanion having pyramidal geometry. Both Y and Z are neutral compounds. Choose the correct options(s): (2019)

- (A) The central atom in Z has one lone pair of electrons
- **(B)** The oxidation state of the central atom in Z is +2
- (C) The central atom in X is sp^3 hybridized
- **(D)** There is a coordinate bond Y